# Hydrogen-Environment-Assisted Cracking under Static and Frequent Types of Loading in Aluminum Alloys

Junya Fushikawa<sup>1</sup>, Shigeyuki Haruyama<sup>2</sup>, Ken Kaminishi<sup>2</sup>, Shuhei Osaki<sup>2</sup> 1 Graduate school of Science and Engineering, Yamaguchi University, Ube-shi, Yamaguchi 2 Graduate school of Management of Technology, Yamaguchi University, Ube-shi, Yamaguchi (E-mail: haruyama@yamaguchi-u.ac.jp)

Abstract: From the viewpoint of applying aluminum alloys to a high-pressure gaseous hydrogen container liner and its periphery members of fuel cell vehicles, the properties of hydrogen-environment-assisted cracking (HEAC) of a high-strength 7075 alloy and medium-strength 7N01 and 6061HS alloys were studied. The HEAC tests under static and frequent types of loading were carried out in a high relative-humidity (RH90%) air environment, using a compact pre-cracked double-cantilever beam specimen in the S-L direction. For the peak-aged alloys 7075-T6 and 7N01-T6 loaded at an initial stress intensity  $K_{li}$ =10.5MPa $\sqrt{m}$  in the stage II, the HEAC growth rate  $(da/dt)_f$  under the frequent loading are enhanced four to five times than that  $(da/dt)_s$  under the static loading. The overaged 7075-T73 and the peak-aged 6061HS-T651 bring about no HEAC extension under the static loading, while in contrast exhibit fairly high  $(da/dt)_f$  under the frequent loading, even though in the same  $K_{li}$ =10.5MPa $\sqrt{m}$ ) level each other. Thus it is suggested that a frequent and locally high stress at crack root plays a role of stimulating both hydrogen ingress through the crack tip surface and hydrogen transport to the process zone ahead of crack tip to govern the HEAC growth rate.

Key words: Aluminum alloys; hydrogen embrittlement; DCB specimen; Crack growth; Frequent loading

## **1** Introduction

On the recent development of hydrogen-fuel cell vehicles, a try to apply of either Al-Mg-Si based 6061 aluminum alloys to a high-pressure gaseous hydrogen container liner or higher-strength Al-Zn-Mg based 7000 series alloys to its periphery members is progressing <sup>[1]</sup>. It is however the most important issue to ensure a safety to hydrogen-induced fracture such as stress corrosion cracking and hydrogen embrittlement, because these alloy members will be subjected to a prolonged service period and in a condition of frequent-loading due to hydrogen charge or discharge.

In this study, for a high-strength 7075 alloy and medium-strength 7N01 and 6061 alloys with various tempers, the property of "hydrogen-environment-assisted cracking:HEAC" under both static- and frequent loadings in humid air was evaluated and also the role of hydrogen in the fracture was studied.

# **2** Experimental Procedure

The tested materials are rolled plates (12mm thickness) of a high-strength 7075 alloy and medium-strength 7N01 and 6061 alloys with various tempers of T5, T6 and T7. The tensile properties of these in the transverse (T) direction of plate are listed in Table 1.

| Alloy  | Temper | $\sigma_{YS}[MPa]$ | $\sigma_B$ [MPa] | $\delta$ [%] |
|--------|--------|--------------------|------------------|--------------|
| 6061HS | T651   | 329                | 351              | 19           |
| 7075   | Т6     | 495                | 564              | 11.9         |
|        | T73    | 436                | 505              | 12.7         |
| 7N01   | Т6     | 341                | 394              | 17.5         |
|        | T5     | 300                | 365              | 17.9         |
|        | Τ7     | 320                | 374              | 17.1         |

 Table 1
 Mechanical Properties (T Direction).

The HEAC test specimen is a compact DCB (Double-Cantilever Beam) type specimen machined in the S-L direction, having width W= 50 mm, height 2H=11mm, thickness B= 10 mm, and side groove thickness  $B_N$ =5mm. The stress intensity factor was given as equation (1), where P:load, a:crack length and  $a_0$ :crack correction length.

$$K_{\rm I} = \frac{2.12P}{(B_N B)^{1/2} H} \left[ \frac{3(a+a_0)^2 + H^2}{H} \right]^{1/2} \tag{1}$$

A pre-crack was first of all introduced to the DCB specimen using a hydraulic-servo testing machine in a fatigue loading of frequency f=10Hz, the stress ratio R=0.1 and sine wave, followed by the HEAC tests in an air environment controlled at relative humidity RH90% and temperature 30°C. The specimen under static-HEAC test was loaded by a screw bolt under a constant displacement for an initial stress intensity  $K_{Iii}=11$  MPa $\sqrt{m}$  and subsequently was statically exposed in the humid air environment of a test chamber for 1000h (42 days). The frequent-HEAC test was performed under a cyclic loading of frequency f=0.05Hz and a trapezoid wave of R=0.1(each time of the maximum and minimum loads is 19s and 0.5s) at a constant maximum load equal to  $K_{Ii}=10$  MPa $\sqrt{m}$ . An amount of crack extension under the static test was analytically evaluated from an output of strain gage attached on each specimen, while under the frequent test a current crack length during test was determined by a method of compliance according to a measured value of crack opening displacement.

#### **3 Result**

The relation between amount of crack extension  $\Delta a$  and loading time t obtained by the static-HEAC test is shown in Figure 1. No crack extension (initiation and growth) is at all observed for each of 6061HS-T651 and 7075-T73. 7N01-T5 and -T7 show the incubation periods of about 300 or 200[h], respectively, until which crack growth begins, followed by a certain crack extension. Both 7075-T6 and 7N01-T6 start crack growth without any incubation periods. The former shows a relatively high crack velocity for about 180h after loading, followed by a state in crack arrest. The latter in contrast presents a continuous crack extension without any arrest during the total test period.

Figure 2 shows crack extension ( $\Delta a$ -time t) curves obtained by the frequent-HEAC test. Although 6061HS-T651 appears to have a relatively longer time up to starting crack growth compared with 7000 series alloys, the subsequent crack velocity can be in a similar level with that of 7N01-T6. Obtained  $K_{I-}$  da/dt curves for the T6 and T7 tempers of 7075, for example, are illustrated in Figure 3.



Figure 1 Relation Between  $\Delta a$  and tObtained by the Static-HEAC test

Figure 2 Relation Between  $\Delta a$  and t Obtained by the Frequent- HEAC Test



Figure 3 Relation Between K<sub>1</sub> and da/dt of 7075

The values of crack growth rate  $(da/dt)_f$  at  $K_f=10.5$ MPa $\sqrt{m}$  on the  $K_f$ -da/dt curves are summarized for the all tempers in Table 2, together with those of  $(da/dt)_f$  at the same  $K_I$  value under the static loading. 7075-T73 with overaged temper presents a more reduced crack growth rate in both static  $(da/dt)_s$ and frequent  $(da/dt)_f$  than those of the T6, while a decrease by overaging is not found so much for 7N01-T7<sup>[2]</sup>. For 6061HS-T651 and 7075-T73, no extension of the static HEAC crack is observed, but instead the frequent HEAC occurs. It is also found for all of alloy tempers that the frequent loading stimulates HEAC extension; for instance, the frequent  $(da/dt)_f$  is increased approximately four to five times than the static  $(da/dt)_s$  for the peak-aged tempers of 7075 and 7N01.

| A Iby  | Temper | S tatic-<br>(da/dt) <sub>s</sub> | Frequent-<br>(da/dt) <sub>f</sub> | (da/dt) <sub>f</sub> /<br>(da/dt)s |
|--------|--------|----------------------------------|-----------------------------------|------------------------------------|
| 6061HS | T651   | 0                                | 12.0                              | $\infty$                           |
| 7075   | T6     | 5.5                              | 22.0                              | 4.00                               |
|        | T 73   | 0                                | 5.1                               | $\infty$                           |
| 7N01   | T6     | 2.2                              | 9.3                               | 4.23                               |
|        | T5     | 0.6                              | 9.0                               | 15.00                              |
|        | Τ7     | 1.2                              | 7.4                               | 6.17                               |

Table 2Crack Growth Rate da/dt (×10'9m/s) at  $K_I$ = 10.5 MPa $\sqrt{m}$  under the<br/>Static-and Frequent-HEAC Tests

Figure 4 shows SEM images of fracture surface in an extended zone of HEAC for 7075-T6. The fracture surface of the static HEAC reveals principally intergranular cracking having locally uneven areas shown in a macroscopic (low-magnification) image, Figure 4 (a), and secondly intergranular tansverse-cracks occurred in a plane normal to the main crack as shown in a magnified microscopic image, Figure 4 (b), giving rise to a reduction of crack driving force. On the other hand, the fracture surface presents a bimodal form composed of intergranular and transgranular areas shown in Figure 4 (c). The intergranular crack is often accompanied with a lot of small tongue-shaped facets, indicating a micro-crack branch.



Figure 4 SEM Images Showing HEAC Fracture Surface at  $K_I$ =10.5MP $\sqrt{m}$  of 7075-T6, (a),(b): static-loading and (c),(d): Frequent-loading

## **4** Conclusion

For various tempered plates of a high-strength aluminum alloy 7075 and medium-strength alloys 7N01 and 6061, the hydrogen-environmental-assisted cracking (HEAC) tests under static and frequent types of loading were carried out in a high relative-humidity air environment, using a compact pre-cracked DCB specimen (S-L direction). The obtained results are summarized as follows.

(1) 7075-T6 showed the highest crack growth rate in all of tested materials under static- and frequent-HEAC tests.

(2) For 7075-T6 and 7N01-T6, the frequent-HEAC crack growth rate  $(da/dt)_{f}$  is increased approximately four to five times than the static  $(da/dt)_{s}$ .

(3) For 6061HS-T651 and 7075-T73, no extension of the static HEAC is presented, but instead the frequent HEAC occurs with a significantly high  $(da/dt)_f$ .

(4) The HEAC resistance of 7N01 is less improved by overaging than that of 7075.

(5) It is suggested that the frequent loading plays a role of stimulating both hydrogen ingress and hydrogen transport to a process zone ahead of crack tip<sup>[3]</sup>.

#### References

[1] NEDO. Reports on Fuel Cell and Hydrogen Technical Development, 2004: 33-45

[2] G. A. Young, J. R. Scully. Hydrogen Effects on Material Behavior and Corrosion. Deformation Interactions, edited by N. R. Moody et al, TMS, 2003: 893-907.

[3] Y. Lee, R. P. Gangloff: Metall. and Mater. Trans. 2007(38A): 2174-2190