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Abstract  In this paper we examine the evolution of network formation and innovation with special 
interest on the heterogeneity of firms in an industry. We present a model in which firms in an industry 
can innovate on their own or in alliance with each other. Alliance formation is based on the cognitive 
distance of firms: whether two firms form an alliance and their probability of success depends on their 
proximity in knowledge space. Knowledge on the other hand is modelled along two dimensions: breadth 
and depth. We use computer simulations to examine the dynamics of network formation and innovation 
in the model industry. The main result of our analysis is that in the present setting innovation falls in the 
long run and networks dissolve over time. In contrast, the heterogeneity of firms in terms of their 
knowledge bases does not decrease, but increases. This result contributes to our present understanding 
of network evolution with respect to heterogeneity and innovation. 
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1 Introduction 

It is always impressive to go back to the roots of a given discipline when founding a study. In our 
case, however, it is not just an intention but has a coherent logical connection to the thoughts we are to 
present here. The root is nothing else than The Wealth of Nations by Adam Smith (Smith, 1959). In this 
work Smith emphasizes the essential role of the division af labour for the well-being of an economy. On 
the other hand, he argues that the division of labour is tightly connected to the accumulation of 
knowledge. In his view the division of labour is possible if people accumulate knowledge which makes 
them more efficient in a particular segment of production, thus knowledge forms the basis for 
knowledge accumulation. However, the connection is not one-directional, as a random division of 
labour, based on chance rather than knowledge leads to the accumulation of knowledge as people gain 
expertise in a field where they had no differentiated knowledge before. The context for this argument is 
that of the economic development and growth in wealth. The accumulation of knowledge eases the 
further division of labour through more efficient production and leads to economic growth by mutually 
advantageous exchanges. 

After a long, but otherwise very fertile period of the neoclassical era in economics dynamic 
economic issues were integrated back to the main body of economic literature. The opening of this new 
vein was the neoclassical growth model of Robert Solow (Solow, 1956). The main contribution of the 
model is that if we include solely labour and physical capital into the set of production factors, economic 
growth can be only temporary: in the long run, the per capita production can not increase, as the growth 
rate of capital equals to that of labour force, thus capital intensity remains constant which leads to 
constant output per capita through a linearly homogenous production function. However, if (exogenous) 
technological change is integrated into the model (knowledge is included in the set of production 
factors), it can be shown that the long run growth rate of per capita output equals to that of the 
technological level. The main conclusion is quite similar to that of Smith: long run growth in the wealth 
of an economy comes from technological change (efficiency improvements), which is due to the 
accumulation of knowledge. 

Although the Solow model proved very useful in understanding the processes of economic 
development, it seems somewhat lame as it leaves unexplained that part of growth, which is the most 
important: technological progress itself. This drawback of the Solow model led to the rise of 
endogenous growth theory, which tries to explain technological change inside the boundaries of its 
models rather than taking it as given. The main issue in endogenous growth literature is to somehow rule 
out the decreasing returns to production factors which impedes growth in the long run. Some models 
only draw on the cumulativeness of knowledge, i.e. knowledge is an input to the production of other 
goods, but the input of knowledge production is solely existing knowledge (Silverberg and Lehnert, 
1994). One can fit among these models those where knowledge accumulation is the byproduct of some 
other economic activity, e.g. the learning-by-doing model of Arrow (Arrow, 1962). Although this 
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cumulativeness of knowledge leads to sustainable long run growth, it does not account for the efforts 
made by economic agents in order to intentionally accumulate new knowledge. Models of this other 
kind, however, put the 'missing link' into the picture, emphasizing that resources must be allocated from 
other activities to knowledge production in order to gain new knowledge (Shell, 1967). These models 
are more convincing in contemporary economies where firms devote considerable resources to research 
and development, i.e. to knowledge accumulation. 

All the models, mentioned before, build on a very strong assumption, namely that knowledge is not 
expropriable. This means that once a piece of new knowledge shows up at some point of the economy, it 
is freely and instantaneously accessible to all other agents. This could be a useful assumption, but 
requires revision. The instantaneous diffusion of knowledge is clearly counter-intuitive, as it requires 
time to be announced about novelties, gain access to the source of knowledge and to learn new things. 
Whether knowledge diffusion is costless, is an other issue. This view comes from the fact that 
knowledge is usually regarded as a public good, which is once generated (produced), is accessible to 
anyone with no possibility to exclude users (i.e. knowledge is non-excludable) and its use does not result 
in a decrease in the available stock (i.e. knowledge is non-rivalrous). While the second characteristic is 
clearly present, the first one (non-excludability) can be questioned. Once somebody creates new 
knowledge, she can retain it to herself by keeping it secret, or she can patent new knowledge thus 
excluding free riders from its use. The excludability of knowledge is tightly connected to its tacitness, to 
be discussed later. However, it is commonly agreed that excludability is present only temporarily: in the 
(very) long run, (roughly) all knowledge is accessible to anyone (i.e. secrets cease being secret, patents 
expire, etc.). 

If knowledge does not diffuse without obstacles in the economy, it is worth examining how it 
diffuses. The literature on knowledge spillovers treats this issue quite thoroughly. Jaffe (1986) proves 
that innovation activity is not isolated in the economy as done by firms, but innovating firms use 
knowledge generated in other points in the economy as inputs to their knowledge generation processes. 
This clearly shows that knowledge is diffusing. Other studies, however, revealed that these knowledge 
spillovers are spatially bounded (Acs et al., 1992; Jaffe et al., 1993; Anselin et al., 1997). According to 
their findings, firms are more efficient in exploiting knowledge coming from other firms, universities 
and research institutes if they are located closer to these sources. Jaffe et al. (1993) shows that the 
localised effect of spillovers dies out through time, although this process is very slow. On the other hand, 
this finding is consistent with that mentioned above, i.e. knowledge can be considered a public good in 
the long run. These results from the knowledge spillover literature, however, refocus our attention to the 
issue of locality in economic growth. 

Although proved empirically, the question remains why spillovers are spatially bounded. One of 
the main factors which are used to explain spatial concentration is the tacitness of knowledge. The 
distinction between tacit and codified knowledge comes from Polanyi (1966), although in the 
contemporaneous literature its meaning and use is somewhat blurred (De Carvalho et al., 2006). 
Codified knowledge is easily formalized, and thus easily communicated through high distances without 
loss of information or meaning. Tacit knowledge, however, can not be formalized, thus its transfer 
requires direct face-to-face interactions between the sender and the receiver, which in turn needs spatial 
proximity among agents. Thus tacit knowledge mainly spreads locally. On the other hand, firms can 
save travelling and other transaction costs if they locate close to each other in order to exploit tacit 
knowledge coming from other firms or institutions. This logic contains the conclusion that spatial 
concentration (or the spatial boundedness of knowledge spillovers) is only necessary in those industries 
where new knowledge is a critical competitive factor (Audretsch and Feldman, 1996), and where 
knowledge is basically tacit (Sorenson, 2005). 

Another reason for spatial concentration of firms uses the arguments of trust and embeddedness. If 
we disregard market mediated knowledge transfers (i.e. when someone pays for knowledge), it turns out, 
that trust is inevitable for this kind of transactions. If one shares her knowledge with other actors, this 
transaction obviously erodes her competitive advantage (which clearly lies in knowledge of things 
which other actors do not know). In these circumstances it is not advantageous for the actor to share her 
knowledge unless she expects others to share their knowledge with her. This expectation, on the other 
hand, roots in mutual trust which requires a past relationship with positive experiences (embeddedness). 
To develop such trustful relationships, agents need frequent personal interaction which is clearly eased 
by spatial proximity. Therefore, we expect to see trustful relationships among agents who locate close to 
each other whereas less of these relationships among agents who locate farther away. 
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Those mentioned above, leads us to the notion of clusters. For firms, which heavily rely on new 
knowledge as the source of their competitive advantage it seems undoubtedly useful to locate close to 
each other, and, moreover, to establish strong linkages among each other in order to gain easy and 
immediate access to new knowledge. The resulting networks (or clusters) show tight cooperation, quick 
knowledge diffusion and a high level of innovativeness. Obviously, clustering tendencies and 
advantages from clustering differ among industries as these industries differ in the extent to which 
access to new knowledge is important, in the tacitness of knowledge used and whether the diffusion is 
mediated by knowledge sharing or knowledge broadcasting processes (Cowan, 2006). 
In everyday language the word cluster is tightly related to innovativeness. According to those mentioned 
before, however, this is not that surprising. An industry in the early phases of its lifecycle relies heavily 
on newly generated knowledge (relative to other, more mature industries). On the other hand, in these 
industries the wider scale of technological opportunities rooting in the technological enfancy of the field 
leads to more innovations in a given period, thus contributing to a picture of dynamism and 
innovativeness. Moreover, in these cases knowledge is more tacit, first because codification is just in 
progress, and second because newly generated knowledge is inherently unstructured ant intuitive. Thus 
it seems logical that for an industry in its enfancy clustering proves considerable advantages 
contributing to dynamism and high innovativeness, while for more mature ones it is less important. Thus 
it seems clear that we observe dynamic, innovative clusters more frequently. 

Recent literature on innovation emphasizes the role of heterogeneity and complementarity in the 
process of innovation. According to this a cluster becomes dynamic and innovative through the diversity 
of technologies, production processes employed and product variants produced by the firms in the 
industry (cluster). Using the terminology of the literature, we can say that firms operate on different 
knowledge bases (Pavitt, 1998; Nelson, 1998). The diversity of these knowledge bases give real 
innovation potential: the combination of different elements, recognizing complementarities reveal a 
wide space for innovations based on association. The strength of innovative clusters lies in the frequent 
interactions of diverse knowledge bases which is mediated by the increasing number of links between 
firms. Thus, advantages in diversity can be exploited rapidly. 

On the other hand, it is understood that it is not heterogeneity itself that contributes to 
innovativeness, rather complementarities in knowledge. This leads to the recognition that innovation 
does not increase indefinitely as heterogeneity grows. Rather, there exists an inverted U-shaped 
relationship between the two (Nooteboom, 1999). Too little heterogeneity means that firms know 
mainly the same, thus there is no room for combining ideas: innovation activity is low. On the other 
hand, if heterogeneity is too high, firms do not even understand each other: they can not communicate 
effectively, thus innovation ceases. In our study we take this inverted U-shaped relationship between 
knowledge heterogeneity and innovativeness as given. For a detailed discussion on the topic see for 
example Cohen and Levinthal (1990), Nooteboom (2004), Wuyts et al. (2003), Cowan and Jonard 
(2007). 

Clustering has another effect with respect to knowledge bases. Firms, who interact frequently, form 
joint research alliances, gradually loose their diversity as they learn from each other. After a while firms 
know the same as they know everything possible in the cluster, thus diversity disappears taking out the 
wind of innovation's sail (Cowan and Jonard, 2007). Thus we expect the cluster to have a special 
lifecycle in which the initial phase characterized by dynamism and innovativeness is followed by a 
mature and declining phase when innovation and dynamism erodes (Lengyel, 2002). 

On the contrary, however, there is some evidence that innovation and heterogeneity can be 
sustained in the long run. These results are in line with the previous findings: if heterogeneity goes 
hand-in-hand with innovation, the two must be observed jointly, or none of it. Regarding the lifecycle 
detailed above, it seems that to maintain innovation, heterogeneity must be rebuilt in the cluster. This 
can be easily done by channelling new knowledge into the cluster from outside (Baum et al., 2003; 
Cowan, 2006). However, Knott (2003) builds a model in which heterogeneity and innovation is 
sustained inside the industry without extra-cluster linkages. 

In this paper we focus our attention on the heterogeneity and innovativeness of clusters. We present 
a model in which firms in an industry innovate on their own or in alliance with each other. The success 
of an alliance depends on the diversity of knowledge bases of the allying firms. This diversity, in turn, is 
measured by their distance in knowledge space. With the analysis of this model we try to answer the 
questions of heterogeneity and innovation in clusters. Our second aim is to examine the characteristics 
of extra-cluster link formation and its effects on intra-cluster dynamics. How extra-cluster linkages are 
formed and to what extent can they affect the revival of innovativeness in the cluster. One of our main 
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finding is that our model retains heterogeneity in the cluster while innovation follows the life-cycle 
pattern (decreases). This feature constitutes a useful extension of existing models of innovation in 
clusters, where heterogeneity and innovation go hand-in-hand, and thus gives a theoretical background 
for some empirical findings of persistent heterogeneity (Molina-Morales and Martínez-Fernández, 2004; 
Leiponen and Drejer, 2007). 

The paper is structured as follows. In Section 2 we outline the model with all its important features. 
In Section 3 we present the results of the simulation of the model, and give an analysis of these results. 
In Section 4 we discuss our findings and Section 5 gives conclusions. 
 
2 The Model 

The industry is populated by N firms. Each firm is characterized by a knowledge-portfolio which 
covers both the breadth and depth of firms' knowledge bases (Prencipe, 2000). This portfolio of firm n  
is represented by the vector ),,,( 21

n
w

nn kkk K=nk , where w  is the highest possible breadth of 

knowledge, and n
ik  represents firm n 's knowledge level in technological (knowledge-) field i . The 

higher value of n
ik , the deeper knowledge firm n  has in field i . Of course, the elements of a firm's 

knowledge vector should be zeros, so we only assume that 0≥n
ik  for all ),,2,1( nn K∈  and 

),2,1( wi K∈ . Consequently, the more 0>n
ik  firm n  has, the broader is firm n 's knowledge 

portfolio, i.e. it has competence in more technological fields. 
In the simulations below, firms' knowledge portfolios are generated randomly at the outset, in two 

steps. First, every ),2,1( wi K∈  technological field become part of firm n 's portfolio with probability 
2/1)0Pr( =>n

ik , ni,∀ .1 Second, if technological field i  is part of firm n 's portfolio, then a given 
n
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ikK . max
ik stands for the 

technological frontier in technological field i . In turn, we can define the whole industry's technological 
frontier with the vector ),,( maxmax

2
max
1 wkkk K=maxk . This vector defines a w -dimensional cuboid in 

the w -space, the cubic capacity of which can be used as a measurement of the technological frontier. 
At the outset, maxk  is given as maxmax kki =  for i∀ . Later on, the technological frontier evolves with 
firms' innovative activity. 

A pair of firms is characterized by their distance in knowledge space. Although we measure 
knowledge along two different dimensions (i.e. breadth and depth), we can simply measure the 
similarity/dissimilarity of two firms by the euclidean distance of points nk  and mk  in the Euclidean 
w -space. Thus, the distance of firm n  and firm m  according to their knowledge bases is simply 
written as: 
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Measuring distance this way is reasonable, as mentioned in the Introduction. Firms can effectively 

communicate with each other if they share at least some technological fields they operate in. However, 
if firms are competent in exactly the same fields, they can still learn from each other if one firm knows 
more than the other, although which firm learns and which receives knowledge is predetermined in this 
case. On the other hand, for the effective communication it is required that firms be close in the depth of 
their knowledge as well, because otherwise one of them would be so advanced relative to the other, 
although in the same field, that their communication would break down. 
2.1 Innovation 

Innovation is modelled as a random process. Firms can innovate alone and in alliances with each 
other. 
2.1.1 Separate innovation 

                                                        
1 We analyze the effect of this probability on the initial knowledge portfolios of firms later. 
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When firms innovate alone, all they can do is to increase their knowledge level in one of their 
existing knowledge fields. In this case, firms innovate with probability 0p . If innovation occurs, one 
field is selected randomly from the firm's portfolio, and the knowledge level in this field is updated 
according to: 
 

1)()1( +=+ tktk n
i

n
i  

 
where t  is the time index. This formulation represents, that through innovation, firms move upwards 
on the knowledge ladder, deepening their knowledge in a given field. Assuming that the value of 
knowledge to the firm is represented by the knowledge level, we can simply calculate the value of the 
knowledge level for firm n  at time t : 
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When evaluating the value of the innovation, consider the expected value of firm n 's knowledge 

base in the next period, which depends on the expected value of the individual knowledge fields: 
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where E  is the expected value operator. The expected knowledge level of technological field i  in the 
next period can be written as follows: 
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where 0>n

ik1  is the indicator function of 0>n
ik  and nw  is the number of technological fields in 

which firm n  is competent.2  
Thus, the expected value of the knowledge base in period )1( +t  is: 
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where in the last equality we used the fact that ∑ ∑>
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very simple form for the value of innovation in this case. The value of innovation can be simply 
characterized by the expected growth in the value of the knowledge base: 
 

[ ] 0)()1( ptVtVE nn =−+  
 

Not too surprisingly, this tells us that if innovation increases one of firm's existing knowledge type 
by 1 unit, and if innovation occurs with probability 0p  than the expected value of this innovation is 

0p . 
2.1.2 Innovation in alliances 

The other possibility for firms to innovate is to look for partners in the industry. However, if two 
firms form an alliance, not only innovation occurs, but they can learn from each other as well. We 
disregard this possibility for the time being, but incorporate it into the analysis in later sections. 
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Innovation between two firms takes the following form in our model. If firm n  and m  meet, 
they innovate with probability mnp , , depending on their distance in knowledge-space: )( ,, mnmn dfp = . 
According to those mentioned in the Introduction, there is an optimal distance between firms, denoted 
by δ , where the probability of success is the highest. Getting farther away from this distance in either 
direction, the probability of success falls. Thus )(df  is single-peaked at δ  and symmetric around δ , 
being monotonically increasing if δ<d  and monotonically decreasing if δ>d . This formulation is 
borrowed from Cowand and Jonard (2007). 

It seems straightforward that alliance firms will innovate in those areas where they both have 
competence. This can be acknowledged relatively easy by intuition. When R&D alliances form, the 
partners set the areas in which they will work together. However, a firm is not interested in choosing 
areas where the firm itself or the partner is not competent as it would radically lower the chances to 
successfully innovate. As research fields are narrowed this way, it becomes highly unlikely that the 
alliance will innovate at a field where either of the partners have no competence. However, we will relax 
this assumption later by allowing alliances to innovate on those fields where either of the allying firms 
have competence. 

When deciding whether to form an alliance with another firm or not, firms must evaluate the 
expected value of joint innovation. As carried out for the autarchic innovation above, this can be done 
by simply calculating the expected value of firm n 's knowledge base in period )1( +t  if it establishes 
an alliance with firm m . The main difference is two-fold. First, the porbability of successful innovation 
now is mnp , . Second, innovation can occur only in those knowledge fields, where both firm n  and 
firm m  have competence. According to these, the expected value of firm n 's knowledge base in 
technological field i  if it cooperates with firm m , is: 
 

[ ] ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

>

>>∀−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
++

=+

otherwisetk

tktkitkptk
w

wtk
w

p
tkE

n
i

m
i

n
i

n
imn

n
inm

nm
n
inmmnn

ii

;0)(

0)(,0)(,);()1()(11)(1
)1( ,,  

 
where nmw  is the number of technological fields in which both firm n  and firm m  has 
competence.3 From this, by summing through i , we get the expected value of firm n 's knowledge 
base: 
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from which the value of joint innovation is: 
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Of course, this method does not take into consideration, that in several cases firms do not have 

common technological fields. Instead of building this into the formulae above, we simply rule out this 
possibility by assuming that firms do not form alliances if they have no common technological fields. In 
this case, the equations above are correct, as if firm n  and firm m  do not have common fields, they 
do not evaluate the value of their joint work, as it is apparently zero. 
2.2 Network Formation 

Given these results, we can see, which firms will form an alliance. Consider, that the maintenance 
cost of a partnership is c  in each period.4 In this case, an alliance between firm n  and firm m  will 
form, if 

                                                        
3 Formally, it can be written that ∑ >>=

i kk
nm

m
i

n
i

w 0,01  
4 Of course, it is a simplification that the cost of maintaining a relationship is independent of the 
number of these relationships: these costs may increase as the number of links grow. 
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cp mn >,  
Therefore, the formation of a link is simply the function of the distance of the two firms considered. 

Holding c  constant, the number of links a firm has is only dependent on the average distance between 
it and the other firms. This distance, in turn, depends on the parameters of the outset of the model, 
namely maxk , w  and ep . As nmmn dd ,, =  by definition, nmmn pp ,, = . This means that if a 
partnership is profitable for firm n , it is also profitable for firm m . So links will be stable in the sense 
that all alliances that form is benefitial to both partners, thus they are interested in keeping it alive at 
least until the next period when knowledge bases change, thus firms' distances change as well. 

In the simulations below, following Cowan and Jonard (2007), we use the simplest form of 
)( ,mndf : 
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where ρ  measures the base width of the inverted U, i.e. the larger is ρ  the more firms are suitable as 
partners according to their distance from firm n . δ  is the optimal distance for innovation, as 
mentioned earlier. 
 
3 Simulations 
3.1 Initial Knowledge Portfolios and the Structure of the Network 

First we check how the parameters of the model influence the properties of the initial industry, i.e. 
the characteristics of the network that forms according to different values of the parameters. The 
analysis was done by Monte Carlos simulations. We made 1000 runs of the simulations with each time 
randomly generated input parameters. The simulations were made only for the first period, i.e. we 
generated knowledge portfolios and analysed the emerging network structure and industry 
characteristics. 

We use four outcome measures that carry some information on the characteristics of the network 
and the industry. These are the following. 

Heterogeneity. Heterogeneity seems to be an important factor in defining innovativeness (Cowan 
and Jonard, 2007; Knott, 2003). However, the heterogeneity of a population can be measured in 
different ways. In our context heterogeneity means diversity in the knowledge bases of the firms. To 
measure heterogeneity we will use statistical entropy. Entropy measures the skewness of the distribution 
of a population in space: if the agents are similar, entropy is low, if they differ, entropy is high (Frenken, 
2004). In our analysis entropy measures how much firms are scattered throughout the knowledge space. 
Although interesting in the initial distribution as well, the heterogeneity of the industry becomes more 
important in the dynamic setting. 

Innovativeness. As our main focus is on innovation activity, we measure how innovative firms are 
in the industry. We do this by simply counting the number of innovations appeared in each run (both 
joint and own innovations of the firms). 

Average degree of a network. Along innovativeness and heterogeneity we are interested in the 
features of the underlying industrial network. For this as a first measure we use the average degree of 
the network, i.e. the average number of links firms have. 

Clustering. As the main focus of our examination is the evolution of clusters, we use the so called 
clustering coefficient as an output variable. The clustering coefficient measures how much a network is 
clustered, i.e. how much 'one's friends are friends of each other' (Cowan, 2005). As this measure also 
consists of counting links in a network, its value correlates with that of average degree. However, the 
clustering coefficient reveals some additional information on the structure of the network than simply 
counting the links between agents. 

The analysis was done by regressing the output variables on the input parameters. The regression 
statistics can be found in the Appendix. 
3.1.1 Heterogeneity 
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We made different regressions by including the parameters into the model one by one.5 The main 
conclusion is that although N , w  and ep  all have significant effect on entropy, the inclusion of w  

and ep  into the regression model does not affect significantly its fit (measured by adjusted 2R ). The 
highest part of the variance in heterogeneity is accounted for by the number of firms in the industry. 

However, this result is straightforward as the entropy statistics is not independent of the sample 
size. To overcome this problem, we normalize the entropy measure in order to eliminate this built-in 
effect.6 After controlling for this effect, and using relative entropy (entropy divided by maximum 
entropy) as a measure of heterogeneity, we find that the number of firms does not really affect the 
heterogeneity of knowledge portfolios, while w  and ep  have positive significant effects. 
When N  was eliminated from the determining factors,7 the fit of the model heavily falls to 0.21, 
which means that although some effect of w  and ep  can be detected, the reasonable part of the 
variation in heterogeneity remains unexplained by the parameters of the model, it is due simply to 
stochastic elements in the simulation.8 

The results above are somewhat expectable, as firms' knowledge portfolios are selected randomly, 
thus we expect the initial landscape of the industry being the most heterogeneous possible. This is 
proved by the data as well, as the relative entropy of the industries is over 0.999 in more than 85% of the 
simulated cases. To have a benchmark for the analysis above, we run the regression on a subset of our 
dataset excluding those cases where the relative entropy exceeds 0.999. 

As it was expected, the fit of the model increases, but only slightly, and the significant independent 
variables remain unchanged.9 So, after controlling for the randomness of the knowledge portfolio 
generating process, we can conclude that the number of relevant technological fields ( w ) and the 
probability with which these fields belong to a firm's knowledge portfolio ( ep ) has positive, significant 
effect on the heterogeneity of firms, however these factors explain a relatively small amount of the 
variance in the entropy. 
3.1.2 Innovation 

Regarding innovation, the results of the regression analysis show, that almost all parameters of the 
model have significant impact on the innovation potential of the initially emerging network. More firms 
(increasing N ) obviously lead to more innovation: first, because own innovation increases (holding 

0p  fixed); second, because the increase in the number of possible links increases the expected number 
of joint innovations. The effect of the probability of innovation ( 0p ) has a similar, intuitively clear 
effect on the number of innovations. The effect of w  and maxk  is significant and negative, whereas 

ep  has no significant effect.10  
The reason why δ  has no significant effect is the following. An increase in δ  can either 

increase or decrease the number of innovations in the industry. Which happens depends on the average 
distance of firms. If δ  moves towards average distance (meaning that more firms get closer to the 
optimal distance), innovation shall increase. In the opposite case, when δ  moves away from the 
average distance (i.e. firms get farther away from optimal), innovation decreases. Thus, the sign of δ  
depends on the relative value of average distance and optimal distance, for which we can not control in 
our dataset. The effect of ρ  is positive and significant, supporting the simple intuition that a wider 

                                                        
5 For the statistics see Table A1 in the Appendix. 
6 The effect of sample size in entropy is hidden in the fact that given the sample size N , the level of 
entropy can vary between 0 and Nln . If the network is heterogeneous, i.e. the entropy is close to its 
maximum, this drives the regression model to measure significant effect of N  on heterogeneity, 
although the underlying networks are qualitatively the same with respect to heterogeneity as they are all 
close to the maximum. 
7 For the statistics see Table A2. 
8 The inclusion of further parameters (δ , ρ , etc. is unuseful as entropy depends solely on the 
distribution of knowledge portfolios in the knowledge space and has nothing to do with network 
structure. 
9 For numerical results see Table A3. 
10 See the results in Table A4. 
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suitable distance from optimal knowledge distance gives more place to alliances thus leading to more 
innovation, holding other things constant. 

We must highlight, however, that much of the simulated cases (about 75%) led to empty networks, 
where firms innovate only on their own. This, in turn, leads to decreased 2R  because in the empty 
network whether firms innovate or not (thus the number of innovations) depend only on 0p . To control 
for this huge portion of the sample showing uninteresting results, we run the regression on the subset of 
the sample where the resulting network was not empty.11 The results for this analysis are more 
convincing: the adjusted 2R  increases to 0.339. The effect of the parameters do not change 
considerably, but their significance decrease by a small extent.12  

In these experiments all parameters were selected independently in the beginning of each run. This 
resulted in 75% of the cases being empty networks. There is a way, however at least in principle to 
reduce this amount by imposing restrictions on some parameters. We reproduced the simulation with the 
(random) values of  δ  and ρ  restricted to some convenient intervals, depending on maxk .13 The 
results change only slightly. Due to a higher portion of the emerging networks being not empty, the 
explanatory power of the new regression analysis somewhat increased, but not considerably. On the 
other hand, the restrictions created multicollinearity among independent variables which caused 
problems in the interpretation. This modification of the simulation thus seems unreasonable. 
3.1.3 Degree and clustering 

We made the same analysis as before for the average degree and clustering coefficient of the 
networks. We discuss the two measures together as they are closely interconnected as mentioned before. 
As the full sample of industries contain 75% of empty networks with zero degree and clustering, we 
exclude these cases from our analysis, so we work with the subsample of those cases where the degree 
exceeds zero (just like in the case of innovations before). The explanatory power of the model increases 
if the empty networks are excluded from the sample.14  

The only major difference between the two regressions is that N  has a positive effect on degree, 
while it does not affect clustering. This feature comes from the fact that the possible number of links a 
firm can have increases with the number of firms, thus degree is positively influenced by N , ceteris 
paribus. The clustering coefficient, on the other hand, is normalized by the number of agents, i.e. it 
measures the ratio of 'triangle-closing' links in one's neighbourhood to that of all possible links in that 
neighbourhood (Cowan and Jonard, 2007). 

Average degree is only determined by N  (as mentioned above), maxk  and ρ . If maxk  
increases, degree decreases and the opposite is true in the case of ρ . The reasons are similar to those 
mentioned in the case of innovations, as degree and innovations depend on the number of links formed 
in the industry. In the case of clustering, however, ep  and δ  join the significant independent 
variables, however their significance is not that high. On the other hand it is also visible that the fit of 
the model is in practice determined by including ρ  among the explanatory variables (the adjusted 2R  
jumps from the invisible 0.043 to 0.32).15 This shows us that although the coefficients of other 
parameters are proved significant, their contribution to the variation in degree and clustering is not that 
important. 

This result seems straightforwrad. Although maxk , ep  and δ  are shown to have an effect on the 
two output measures, this effect is not intuitive. Changing the first two parameters leads to a change in 
the size of the knowledge space, thus leading to a change in average distance between firms. Whether 
                                                        
11 A network was considered 'not empty' if the average degree exceeded zero, i.e. if at least one link 
existed among firms. 
12 See the results in Table A5 
13 Our method rests on the observation that once maxk  is determined, through average distance 
between firms it restricts those values of δ  which can lead to not-empty networks. It can be easily 
proved that if δ  exceeds max2k , than no links can be formed with ρ  assumed to equal zero. Thus 

we restricted the value of δ  to the interval )2;0( maxk . On the other hand, ρ  is restricted to the 

interval )2;min(;0( max δδ −k . On these intervals δ  and ρ  were selected randomly. 
14 Detailed results are presented in Tables A6 and A7. 
15 This is true in both the degree and clustering regressions. 
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this change leads to more links and clustering, depends on the relative value of average distance to 
optimal distance for innovation (see the analysis in the case of innovations before). The case of 
parameter δ  is the opposite, as the sign of its effect is determined by the average distance. Parameter 
ρ , on the other hand, defines the area around optimal distance in which joint innovation can be 
profitable. If this area increases, regardless of average distance among firms, more pairs of firms will 
find profitable to form an alliance, and degree and clustering will increase. 

This analysis was carried out also with the aforementioned restricted intervals of δ  and ρ . The 
results for this are the same as in the case of innovations: increasing the adjusted 2R  by a small extent, 
but creating controversies through multicolleration. 
3.1.4 Correlation between output variables 

After analysing the effect of different parameters on the characteristics of the emerging industry 
network, it seems useful to have a glance on the correlation between the output variables, i.e. relative 
entropy, innovation, degree and clustering. Table 1 shows the results for the correlation analysis. 

Table 1 Correlation between Output Variables 
  deg ino cls relent 

Pearson Correlation 1 ,646(**) ,789(**) -,078 
Sig. (2-tailed)  ,000 ,000 ,451 deg 

N 96 96 96 96 
Pearson Correlation ,646(**) 1 ,490(**) ,016 

Sig. (2-tailed) ,000  ,000 ,880 ino 
N 96 96 96 96 

Pearson Correlation ,789(**) ,490(**) 1 -,155 
Sig. (2-tailed) ,000 ,000  ,131 cls 

N 96 96 96 96 
Pearson Correlation -,078 ,016 -,155 1 

Sig. (2-tailed) ,451 ,880 ,131  relent 
N 96 96 96 96 
**  Correlation is significant at the 0.01 level (2-tailed). 

 
The correlation coefficients were calculated for those records in the dataset, where entropy is not 

full, and the network is not an empty one.16 The results are as follows. We find positive, significant 
correlation among innovation, clustering and degree. This comes from two facts. First, that clustering 
and degree correlate with each other by definition, as mentioned above, second, that more links lead to 
more innovation holding fixed the probability of innovation. On the other hand, we find no significant 
correlation between relative entropy and any of the other variables. This result is the same if we use 
absolute entropy instead of relative. 

As a benchmark, we calculated the same coefficients for the full dataset, i.e. all empty networks 
and full entropies included. On this dataset we find significant correlation between relative entropy and 
the other output variables, however these correlation coefficients are much smaller than those of the 
others, and are negative, showing that more heterogeneity leads to less links among firms and less 
innovation. This results roots in the obvious fact that much of the observations include full entropy and 
zero degree and clustering at the same time which leads the correlation statistics to state that high 
entropy matches with small degree and innovation. 

However, the results of entropy having no significant effect on innovation can be easily understood 
in our setting. Our model of innovation does not state that heterogeneity is unconditionally favourable 
for innovation, rather that there exists an inverted U-shaped relationship. Too much homogeneity leads 
to less innovation as firms have very few things to learn from each other. On the other hand, too much 
heterogeneity leads to less innovation as well, because firms can not efficiently communicate with each 
other, thus less links form in the industry. 
3.2 Dynamic Analysis 

Although the characteristics of the initially emerging network give some important insight into the 
mechanisms of the model-industry, we are mainly interested in the dynamics of the networks, i.e. how it 
                                                        
16 This meant 115 observations out of the simulated 1000. 
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evolves over time through innovation and the consequent evolution of knowledge bases. As outlined in 
Section 2, firms innovate either on their own or in alliance with other firms. Through innovation, firms' 
knowledge bases change as well, i.e. they know more in the consecuting period. This change in the 
knowledge base can lead to different network structures than before. In this section we analyse this 
dynamics, using the formerly introduced output variables to evaluate the outcomes. 

The method is basically the same: we run a Monte Carlo simulation with 1000 independent 
experiments. In each one the input parameters were selected randomly, and than after generating the 
initial knowledge portfolios and the emerging network, the alliance-formation and innovation process 
were iterated 300 times consecutively (i.e. we had 300 periods). The output variables were calculated for 
each period, and we use these values to analyse the dynamics. 
3.2.1 Stable vs. evolving networks 

As a first glance on the data one realizes that part of the experiments lead to a stable network, i.e. 
the output variables do not change over the 300 periods. These networks, however, largely correspond to 
empty networks: out of the 1000 experiments we found only 30 cases where an initially not empty 
network remained stable, whereas only 22 cases occured where an initially empty network changed over 
time. These together give only 5% of the experiments. The remaining majority of the cases show either 
initially empty networks remaining empty or initially not empty networks evolving over time. 
We took those 948 samples where either change occured or the networks remained empty and used a 
binary logistic regression model to see which paramerters of the model affect the evolution.17 The 
detailed results are presented in Table A8.  

We run the regression by including the parameters as independent variables one by one. The 
explanatory power (as measured by the Nagelkerke 2R ) gradually increases as the new parameters are 
included in the model, the best fit is generated by including all parameters. The best fit corresponds to a 
Nagelkerke 2R  of 0.549. The results show that all parameters have significant effect on the probability 
that a network evolves or not, except 0p . The number of firms has a positive effect, showing that more 
firms lead to higher probability of a change in the network structure. The parameters determining the 
initial knowledge portfolios (i.e. w , maxk  and ep ) all have negative effect on this probability. These 
parameters affect initial knowledge portfolios and through this effect they determine the initially 
emerging network. The fact that 0p  has no significant states that the overall probability with which 
innovation occurs does not affect the evolution of networks: should it be higher or lower, the dynamics 
of the underlying network do not change considerably. Parameters δ  and ρ  have a significant 
positive effect on the evolution: higher their values, higher the probability of getting an evolving 
network. These results can also be interpreted as the effect of the parameters affecting the initially 
emerging networks being empty or not.18 
3.2.2 The evolution of the networks 

Our main interest is in the subset of those networks where some change in the network structure 
can be detected. In these cases we analysed the overall direction of the change. For this reason we 
calculated the difference of the output variables between periods and averaged them over the 300 
periods to gain a measure of the direction of change. If this exceeds zero, we conclude that the given 
variable increases through time and vice versa. 
Entropy 

First, we look at the evolution of the entropy of the networks. For the analysis hereon we use the 
relative entropy measure. Initially more than 80% of the networks show full entropy, and after 10 
periods this share increases to 97%. At the end of the 300 periods more than 98% of the networks (532 
out of 542) is totally heterogeneous according to entropy. The average change in relative entropy, 
although very low, is positive or zero in each case. Thus we can conclude that in our model, irrespective 
of the parameters, heterogeneity does not decrease through time with the evolution of the networks. This 
is reassured by our simple regression analysis in which we regressed average change in relative entropy 
on the model parameters. The results indicate that the highest adjusted 2R  is 0.073, and all parameters 

                                                        
17 We used only average degree, entropy and clustering to evaluate the stability of the network, as 
innovation is not a characteristic of the network itself, and as a random process, it changes from period 
to period without an underlying change in the network structure. 
18 As a benchmark, we have the same results by running the regression on the initial portfolios. 
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except w  and ep  were found insignificant (see results in table A9). We come back to this result later 
on. 
Innovation 

Regarding innovation, we found that in 493 out of the 541 observed cases innovation decreases 
over time. The average of the average decreases is -16.3. In the remaining 48 cases innovation increases 
on the average, and the average is only 2.1. This leads to the conclusion that innovation is decreasing in 
our model irrespective of the model parameters, increasing innovation being an exception rather than a 
rule.19 A further analysis was made to detect the effect of different parameters on the extent of the 
average decrease in innovation. We regressed the average change in innovation on the model parameters, 
and got a model with adjusted 2R  equal to 0.42. All the parameters except ep  were found to have 
significant effect on the change in innovation. This is not surprising, however, as innovation itself is 
determined by these parameters (see the analysis of the initial portfolios), so one must expect the 
absolute value of change in innovation to vary with the model parameters. To rule this effect out, we 
normalized the number of innovation with innovation in the first period. This way we got a measure of 
relative change in innovation. The average of the 300th period is 0.418 which states that on average 
networks innovate only 42% of their first-period innovations in the 300th period,20 which clearly shows 
that innovation decreases over time. To evaluate whether model parameters really have an effect on the 
change in innovation, we regressed these 300th period innovation ratios on the parameters. As a result, 
we got a very loose relationship with adjusted 2R  equal to 0.002 and with highly insignificant 
coefficients (see the results in table A10). These results show that the extent of the decrease in 
innovation is independent of the model parameters, the variation in the 300th period relative innovations 
is only due to chance. 

Degree and clustering 
In the case of degree and clustering, we followed the method described above in the case of 

innovations: we calculated relative degree and clustering as the ratio of its actual value to that of the first 
period. In the case of degree we found that on average the 300th period degree is 28.3% of the first 
period value, whereas in the case of clustering this ratio is 25%. There are 15 and 12 cases out of 541 in 
the case of degree and clustering respectively where the 300th period value is higher than the first period 
one. The average of these cases, however is more considerable than in the case of innovation: 426% in 
degree and 177% in clustering, and we can not convincingly detect outliers here as half of the cases are 
of that kind. However, the results clearly show, that apart from some 2% of the simulated cases the 
structure of the networks gradually dissolve as time passes by. In addition we carried out a scrupulous 
regression analysis to see the effect of parameters on the evolution of degree and clustering, and in both 
cases we found small 2R  with correspondingly insignificant coefficients (see tables A11 and A12). 
3.2.3 Innovation and heterogeneity 

As a final issue we can give a glance to the correlation between output-variables, i.e. if there is a 
connection between the evolution of degree and entropy, etc. 
The findings are as follows (see Table 2). Significant correlation can be detected between clustering and 
degree, but it is not surprising, as mentioned above with regard to the analysis of the initial networks. 
There is a very strong, significant correlation, however, between degree and innovation and clustering 
and innovation. This means that if the network grows, innovation increases, whereas if the network 
breaks apart, innovation decreases. This result is also not that surprising as already mentioned in the 
previous sections. 

                                                        
19 However, this number is mainly due to three outliers with 13.7, 63.4 and 9.9 as average increase. If 
we exclude these from our sample, the average decreases to 0.3 which is not significantly different from 
zero. Moreover, in 2 out of the 3 outliers it can be shown that innovation first increases, but eventually 
starts to decrease, thus it seems that in these cases a longer experimental horizon would have led to a 
decreasing average change in innovation. 
20 With the three outliers excluded from the dataset. 
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Table 2 Correlation of the Direction of Change in Output Variables 

    deg_avgch ino_avgch cls_avgch ent_avgch 
relent_avg

ch 
deg_avgch Pearson Correlation 1 ,763(**) ,692(**) ,024 ,039
  Sig. (2-tailed)  ,000 ,000 ,573 ,359
  N 541 541 541 541 541
ino_avgch Pearson Correlation ,763(**) 1 ,445(**) ,005 ,023
  Sig. (2-tailed) ,000  ,000 ,911 ,588
  N 541 541 541 541 541
cls_avgch Pearson Correlation ,692(**) ,445(**) 1 ,107(*) ,128(**)
  Sig. (2-tailed) ,000 ,000  ,013 ,003
  N 541 541 541 541 541
ent_avgch Pearson Correlation ,024 ,005 ,107(*) 1 ,989(**)
  Sig. (2-tailed) ,573 ,911 ,013  ,000
  N 541 541 541 541 541
relent_avgch Pearson Correlation ,039 ,023 ,128(**) ,989(**) 1
  Sig. (2-tailed) ,359 ,588 ,003 ,000 
  N 541 541 541 541 541

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 

However, we find no significant relationship between entropy (heterogeneity) and the other output 
variables (neither in the case of relative, nor absolute entropy). This is an important result, showing that 
heterogeneity is persistent, but innovation and clustering ceases. This is interesting in the dynamic 
setting, as here firms have enough time to converge to each other in the knowledge space through 
innovation, but they do not. Some firms break ahead, permanently pushing out the technological frontier, 
while others try to keep up with them. Heterogeneity does not decrease but rather increase. This result is 
in line with some recent research in the industrial organization and innovation literature (see e.g. Knott, 
2003; Molina-Morales and Martínez-Fernández, 2004; Leiponen and Drejer, 2007). 

This latter result seems consistent with the findings of Cowan and Jonard (2007) who conclude in a 
basically similar setting that all networks break up eventually, however, the reason for this in their 
model is that firms become too homogeneous and this hampers alliance-formation thus leading to the 
fall of a cluster. In our model networks fall, their innovation potential decreases but heterogeneity is 
persistent. 

Our findings also shade the results of Knott (2003), where persistent heterogeneity is connected to 
sustainable innovation. Our model demonstrates, that using a reasonable setting for innovation in 
knowledge-networks, innovation eventually decreases whereas heterogeneity is persistent. This does not 
mean, however that the former approaches are of no value. Rather, we see our model as an addition to 
those mentioned above, contributing to a typology of cluster-evolution. 
This typology differentiates between clusters with respect to the evolution of the heterogeneity of cluster 
firms and that of the innovation potential of the cluster. With two classes along both dimensions we can 
distinguish among four types of cluster-evolution. 

The first category can be labelled as 'dynamic', showing both sustainable innovation and persistent 
heterogeneity. The model of Knott (2003) fits to this type. 

The opposite category is that of decreasing heterogeneity (firms becoming homogenous) and 
decreasing innovation. This type may be named 'declining' and the model of Cowan and Jonard (2007) 
fits to this one. 

Our model shows persistent heterogeneity but decreasing innovation, leading to a 'fragmented' 
cluster with different firms but with small innovative potential. 

The fourth version is the case of homogeneous firms and sustainable innovation, which could be 
labelled 'competitive', but we have found no suitable model for this type, although the situation is not 
impossible in principle. 
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Table 3 Typology of Cluster Evolution Regarding Heterogeneity and Innovation 

  Sustainable Innovation Decreasing Innovation 

Persistent Heterogeneity Dynamic cluster    Knott (2004) Fragmented cluster     This model 

Decreasing Heterogeneity Competitive cluster      ? Declining cluster  Cowan&Jonard (2007)

3.3 Dynamics with Learning 
In the experiments above firms did not learn from each other, but innovated in those areas where 

both partners had competence. The results showed that heterogeneity does not decrease in the long run. 
However, if we let firms learn from each other, heterogeneity may fall. Learning may be viewed as 
firms integrating new knowledge areas in their portfolios. The selection of the new areas depend on the 
knowledge portfolio of the partners: firms do not gain new knowledge fields 'from the air' but learn it 
from others through alliances. 

In order to examine the implication of learning in our model, we proceeded two ways. The first 
solution can be regarded as 'learning through innovation'. In this case a pair of firms (alliance formation 
depending on cognitive distance henceforward) can innovate in all fields in which either of them has 
competence. If the knowledge field where the innovation occurs belongs to only one firm's portfolio, the 
other firm will integrate it into its portfolio as well, so it will learn from the other firm something new. 
However, this method only accounts for learning when innovation occurs as well and disregards the 
possibility of autonomous learning in the sense that firms may learn from each other without successful 
innovation. This concept characterizes our second way of examining learning in the model. We modify 
the model by allowing firms to 'innovate' also in those situations when the joint innovation is not 
successful.21 In these cases one of the firms integrate a new knowledge field into its portfolio, which is 
part of the partner's portfolio. 
3.3.1 Learning through joint innovation 

Analyzing the results of the simulations when learning through innovation may occur, one find few 
differences compared to the results detailed above. Nearly all of the numbers change insignificantly. Out 
of the 1000 experiments now 421 showed empty networks throughout the 300 periods and there were 
510 evolving networks with initially not empty ones. We found 53 cases when an initially not empty 
network remained unchanged and only 16 cases when an initially empty network changed. These 
together give only 7% of the experiments. 

The analysis of the effect of our model parameters on the evolution gives indistinguishably the 
same results as above. The number of firms affect positively, the parameters of the initial knowledge 
portfolios as well as δ  and ρ  affect negatively the probability that a network evolves over time. The 
explanatory power of the regression is higher than 0.5. 

Regarding the evolution of the different output measures, we found the following results. At the 
end of the 300 periods more than 98% of the networks showed full entropy, and the average change in 
relative entropy is, although very low, positive or zero. As a consequence, the model parameters do not 
affect significantly the evolution of relative entropy. 

The results for relative innovation are a bit different from the previous ones. We found that out of 
the 510 cases when the underlying network had changed, in 456 (which is 89.4%) innovation decreases 
over time. However, calculating the relative innovations in the 300th period, we concluded that the 
average level of innovation was 74% of that of the first period which is significantly higher than the 
42% of the model without learning. This result suggests that when learning through innovation is 
allowed, although the tendency of innovation does not change (it is decreasing over time), the change 
becomes slower: networks do not loose that much from their innovative potential, given the same time 

                                                        
21 Note, that technically we can not distinguish between innovation and learning in our model. Learning 
means that a firm has new knowledge which is the same as innovation. The difference is that learning 
means new knowledge only to the firm itself. (On the other hand, innovation is not necessarily new to 
the industry as a whole: alliances may innovate something which is already known by others.) 
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period.22 The regression analysis of the model parameters again shows high explanatory power with 
insignificant parameters. 

The same methods were applied for degree and clustering. In the case of degree we found that the 
degree of the 300th period was on average only 25.8% of that of the first period which is not 
significantly different from the 28.3% of the learningless analysis. The case of clustering is a bit 
different: the 300th period clustering coefficient was on average 43% of the first period one, whereas in 
the former case it was 25%. 

This suggests that in the case of learning through innovation the degree of the network changes in 
the same manner as without such learning, but clustering decreases more slowly. This result, moreover, 
reflects the fact that although degree and clustering are closely interconnected, they are not the same. 
Cowan (2006) highlights that the most effective networks regarding knowledge diffusion seem to be the 
so called 'small worlds' which show short average distance and high clustering. Connecting them to 
these findings, our results imply that networks tend to be more clustered in the long run if learning is 
present. On the other hand, these findings put the results of Cowan (2006) into a dynamic setting: it 
seems that learning is facilitated by small worlds with high clustering, but in our dynamic model the 
inclusion of learning maintains this favourable environment in the long run. 

On the other hand, there are 33 and 35 cases out of the 510 when degree and clustering respectively 
is higher in the 300th period than in the first one. The average increase is 472.6% with respect to 
clustering and 1089% with respect to degree which is again more considerable than in the case of no 
learning. This suggests that when learning through innovation is accounted for, an increase in innovation, 
degree and clustering is more likely than in the case of no learning. These cases, however, give only 
6-7% of the experiments which still remain inconsiderable. The regression analysis for the effect of the 
model parameters on degree and clustering give small 2R s and not too significant coefficients. 
3.3.2 Autonomous learning 

The experiments with autonomous learning give the same results as before. Out of the 1000 
experiments we found 64 where an initially not empty network remained unchanged over time and only 
16 where an initially empty networked changed. Out of the remaining 920 cases 536 showed change, the 
others were those with an initially empty networks remaining empty throughout the 300 periods. 
The evolution of entropy in the autonomous learning experiments is the same as before: more than 80% 
of the networks showed full entropy in the beginning and entropy increased as time passed by. In the 
300th period more than 98% of the networks was fully inordinate. 

Innovation was decreasing on average, with innovative activity in the last period being 62% that of 
the first period. This is again significantly higher than the 41% of the learningless experiments, but not 
too different from the 74% of the learning through innovation case. As a conclusion we might state that 
learning (irrespective of its form) contributes positively to the long run innovativeness of networks, 
however we do not dare to differentiate between autonomous learning and learning through innovation. 
As in the learning through innovation case, the clustering coefficient in the 300th period is 43% of that 
of the first period, which is higher compared to the learningless experiments. However, now the 300th 
period degree also seems to be higher 39% compared to a 28%. This difference, however, is not too 
impressive. On the other hand the degree and clustering coefficient of the last period is higher than the 
first period value in 33 and 51 cases respectively, which shows that including learning in the model 
increases the possibility of finding a growing network after 300 periods of run. 

In this set of experiments, these 84 cases constitute more than 15% of the 536 cases, so it is worth 
examining which parameters of our model have an effect on an expanding network. To see this, we run 
a simple binary logistic regression with expanding vs. contracting networks as the dependent variable 
and the model parameters as regressors. The analysis gives a Nagelkerke 2R  of 0.217, which is not too 
convincing. As for the parameters, only maxk , 0p  and ρ  were found significant. 
 
4 Conclusions 

In this section we summarize our results gained from the simulations described above and provide 
some conclusions. 

Our first observations were drafted according to the parameters of the model and their effect on the 
characteristics of the initially emerging network. The main conclusion was that the model parameters do 
                                                        
22 It is important to note, that the number of innovations were calculated as before: learning do not 
count as innovation, although we have emphasized that technically they are equivalent. 
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not explain considerably the network structure, innovation and heterogeneity, although some 
correlations were found. This result is maintained after controlling for empty networks in the initial set. 
These correlations, on the other hand, are as expected. 

The analysis of the initially emerging networks reveals interesting results for the correlation of 
different network characteristics. We find no significant correlation between the heterogeneity of the 
network and innovation. This clearly mirrors our supposition that heterogeneity is not per se 
contributive to innovativeness, but there exists an inverted U-shaped relationship instead. 

The main focus of our model was on the dynamic evolution of networks through time. This 
analysis has led to interesting results. As a first intuition one would expect that as time passes by, firms 
become more similar through joint innovation. Our results, however, show the opposite. Heterogeneity 
does not decrease but rather increase in our setting. Increasing heterogeneity on the other hand do not 
lead to increasing innovation as compared to the results of other studies. In our model innovation 
together with clustering and degree decreases over time. That is, although heterogeneity is persistent, 
networks dissolve over time causing innovation to fall in the industry. 

These results have led us to set up a typology of cluster dynamics where we differentiate the 
evolution of networks (clusters) along two dimensions. The first is whether heterogeneity is persistent or 
falling, the other is whether innovation is maintained or decreasing in the long run. The literature 
provides examples for persistent heterogeneity with maintained innovation as well as for decreasing 
heterogeneity and decreasing innovation. Our model provides example for persistent heterogeneity with 
decreasing innovation suggesting that heterogeneity per se is not a sufficient condition for long run 
innovativeness. 

We examined further the evolution of networks by including learning in out setting. As a first 
intuition, this gives a 'tackle' to our networks, meaning that firms are becoming more homogeneous, as 
not only joint innovation brings them closer as before, but learning as well. We examined two kinds of 
learning: learning through innovation and autonomous learning. In both cases learning is conditional on 
alliances. The inclusion of learning in the simulations gives the impression that learning somewhat 
contributes to innovation and clustering, however it does not cancel their overall decreasing trend. 
Rather, when learning is present, the rate of decline in innovation, degree and clustering is smaller but is 
not nonnegative. On the other hand, heterogeneity is still non-decreasing in either case of learning. 
Whether learning happens through innovation or autonomously, does not affect considerably these 
results. 

In this paper we tried to analyse extensively the presented model, however lot of interesting 
questions remained untouched. One is how the evolution of networks changes if the cost of maintaining 
an alliance is not independent of the number of these relationships. One would expect that the 
'dynamism' of innovation and network-formation falls in this case. The other interesting question is the 
presence of multi-agent alliances. These are all important lines to further analyse this setting. 
The main issue in this line, however, is decreasing innovation and the possibility of refreshing 
innovativeness in an otherwise declining cluster. It is important to see how extra-cluster linkages form 
and how these links can channel extra-cluster knowledge into the network. Our findings suggest that 
different mechanisms must work in the case of a declining cluster (with decreasing heterogeneity and 
innovation) and a fragmented cluster (persistent heterogeneity and decreasing innovation) of this paper. 
We find this question as a perspective line for further research. 
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Appendix 
Table A1 Results of the regression analysis for absolute entropy 

 
Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate
1 ,752(a) ,566 ,565 ,64523
2 ,764(b) ,583 ,582 ,63225
3 ,764(c) ,583 ,582 ,63253
4 ,791(d) ,626 ,625 ,59942
  a  Predictors: (Constant), N 
  b  Predictors: (Constant), N, w 
  c  Predictors: (Constant), N, w, kmax 
  d  Predictors: (Constant), N, w, kmax, pe 
 

Coefficients(a) 

Unstandardized Coefficients
Standardized 
Coefficients 

Model  B Std. Error Beta t Sig. 
(Constant) 2,219 ,042  52,353 ,000 1 

N ,026 ,001 ,752 36,041 ,000 
(Constant) 1,977 ,056  35,467 ,000 

N ,026 ,001 ,758 37,052 ,000 
2 

w ,005 ,001 ,133 6,511 ,000 
(Constant) 1,965 ,065  30,155 ,000 

N ,026 ,001 ,758 37,033 ,000 
w ,005 ,001 ,133 6,497 ,000 

3 

kmax ,000 ,001 ,007 ,351 ,726 
(Constant) 1,597 ,071  22,582 ,000 

N ,026 ,001 ,763 39,286 ,000 
w ,005 ,001 ,136 7,000 ,000 

kmax ,000 ,001 ,010 ,540 ,589 

4 

pe ,684 ,064 ,207 10,681 ,000 
 a  Dependent Variable: ent 
 

Table A2 Results of the regression analysis for relative entropy 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate
1 ,031(a) ,001 ,000 ,14257
2 ,237(b) ,056 ,054 ,13864
3 ,238(c) ,056 ,054 ,13869
4 ,449(d) ,202 ,198 ,12765
a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
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Coefficients(a) 

Unstandardized Coefficients
Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant) ,970 ,009  103,611 ,0001 
N ,000 ,000 -,031 -,969 ,333
(Constant) ,908 ,012  74,295 ,000
N -9,61E-005 ,000 -,019 -,628 ,530

2 

w ,001 ,000 ,235 7,634 ,000
(Constant) ,904 ,014  63,250 ,000
N -9,65E-005 ,000 -,019 -,630 ,529
w ,001 ,000 ,235 7,615 ,000

3 

kmax 8,79E-005 ,000 ,018 ,586 ,558
(Constant) ,805 ,015  53,458 ,000
N -5,84E-005 ,000 -,012 -,414 ,679
w ,001 ,000 ,240 8,455 ,000
kmax ,000 ,000 ,024 ,851 ,395

4 

pe ,183 ,014 ,381 13,447 ,000
 a  Dependent Variable: relent 
 

Table A3 Results of the regression analysis for relative entropy with maximum entropy cases excluded 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate
1 ,079(a) ,006 -,002 ,29014
2 ,093(b) ,009 -,007 ,29093
3 ,109(c) ,012 -,012 ,29162
4 ,496(d) ,246 ,222 ,25574

a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 

Coefficients(a) 

Unstandardized Coefficients
Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant) ,659 ,061  10,872 ,0001 
N ,001 ,001 ,079 ,894 ,373
(Constant) ,647 ,065  9,971 ,000
N ,001 ,001 ,078 ,875 ,383

2 

w ,001 ,001 ,049 ,558 ,578
(Constant) ,623 ,075  8,253 ,000
N ,001 ,001 ,076 ,859 ,392
w ,000 ,001 ,042 ,464 ,643

3 

kmax ,001 ,001 ,057 ,633 ,528
(Constant) ,445 ,072  6,168 ,000
N ,000 ,001 ,027 ,344 ,731
w ,003 ,001 ,331 3,616 ,000
kmax ,001 ,001 ,059 ,748 ,456

4 

pe ,737 ,119 ,565 6,208 ,000
 a  Dependent Variable: relent 
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Table A4 Results of the regression analysis for innovation 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,248(a) ,062 ,061 370,06907 
2 ,261(b) ,068 ,066 368,95179 
3 ,332(c) ,110 ,107 360,77226 
4 ,334(d) ,111 ,108 360,67821 
5 ,379(e) ,144 ,139 354,23942 
6 ,379(f) ,144 ,139 354,34778 
7 ,422(g) ,178 ,172 347,40028 
a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, delta 
g  Predictors: (Constant), N, w, kmax, pe, p0, delta, rho 

 
Coefficients(a) 

Model   Unstandardized Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) -46,742 24,310  -1,923 ,055
  N 3,303 ,408 ,248 8,092 ,000
2 (Constant) 10,874 32,527  ,334 ,738
  N 3,251 ,407 ,244 7,979 ,000
  w -1,077 ,406 -,081 -2,656 ,008
3 (Constant) 142,344 37,170  3,830 ,000
  N 3,263 ,398 ,245 8,190 ,000
  w -1,009 ,397 -,076 -2,545 ,011
  kmax -2,665 ,390 -,204 -6,835 ,000
4 (Constant) 116,782 42,555  2,744 ,006
  N 3,273 ,398 ,246 8,216 ,000
  w -1,003 ,397 -,076 -2,528 ,012
  kmax -2,658 ,390 -,204 -6,817 ,000
  pe 47,530 38,558 ,037 1,233 ,218
5 (Constant) 4,741 45,624  ,104 ,917
  N 3,338 ,391 ,251 8,529 ,000
  w -1,100 ,390 -,083 -2,822 ,005
  kmax -2,698 ,383 -,207 -7,046 ,000
  pe 39,817 37,891 ,031 1,051 ,294
  p0 237,817 38,836 ,180 6,124 ,000
6 (Constant) 16,527 49,367  ,335 ,738
  N 3,337 ,392 ,251 8,523 ,000
  w -1,097 ,390 -,083 -2,813 ,005
  kmax -2,701 ,383 -,207 -7,050 ,000
  pe 39,901 37,903 ,031 1,053 ,293
  p0 238,198 38,852 ,180 6,131 ,000
  delta -,242 ,386 -,018 -,626 ,531
7 (Constant) -116,388 52,651  -2,211 ,027
  N 3,348 ,384 ,252 8,722 ,000
  w -1,004 ,383 -,076 -2,624 ,009
  kmax -2,670 ,376 -,205 -7,108 ,000
  pe 38,683 37,160 ,030 1,041 ,298
  p0 229,381 38,115 ,174 6,018 ,000
  delta -,105 ,379 -,008 -,276 ,783
  rho 12,276 1,915 ,185 6,412 ,000

 a  Dependent Variable: ino 
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Table A5 Results of the regression analysis for innovation with empty networks excluded 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,336(a) ,113 ,110 575,44381 
2 ,336(b) ,113 ,107 576,23285 
3 ,453(c) ,205 ,198 546,16160 
4 ,472(d) ,222 ,213 541,10771 
5 ,528(e) ,278 ,267 522,05566 
6 ,528(f) ,279 ,266 522,73962 
7 ,576(g) ,332 ,318 503,79783 
a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, dela 
g  Predictors: (Constant), N, w, kmax, pe, p0, dela, rho 

 
Coefficients(a) 

Unstandardized Coefficients 
Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant) -127,528 76,244  -1,673 ,0951 
N 7,765 1,191 ,336 6,519 ,000
(Constant) -137,818 84,273  -1,635 ,103
N 7,736 1,197 ,334 6,463 ,000

2 

w ,314 1,088 ,015 ,288 ,773
(Constant) 222,524 98,627  2,256 ,025
N 8,080 1,136 ,349 7,113 ,000
w -1,550 1,074 -,074 -1,443 ,150

3 

kmax -6,989 1,122 -,317 -6,228 ,000
(Constant) 27,220 121,695  ,224 ,823
N 8,049 1,125 ,348 7,151 ,000
w -,761 1,104 -,036 -,689 ,491
kmax -5,837 1,191 -,265 -4,900 ,000

4 

pe 279,492 103,805 ,142 2,692 ,007
(Constant) -219,712 127,123  -1,728 ,085
N 8,194 1,086 ,354 7,544 ,000
w -,854 1,065 -,041 -,802 ,423
kmax -5,984 1,150 -,271 -5,205 ,000
pe 230,781 100,610 ,117 2,294 ,022

5 

p0 516,369 101,908 ,238 5,067 ,000
(Constant) -211,582 129,206  -1,638 ,102
N 8,156 1,093 ,352 7,466 ,000
w -,724 1,124 -,034 -,645 ,520
kmax -5,784 1,274 -,262 -4,539 ,000
pe 243,319 106,389 ,123 2,287 ,023
p0 513,486 102,345 ,236 5,017 ,000

6 

dela -,437 1,193 -,019 -,367 ,714
(Constant) -504,517 137,009  -3,682 ,000
N 8,005 1,053 ,346 7,600 ,000
w -,558 1,084 -,027 -,515 ,607
kmax -5,269 1,232 -,239 -4,276 ,000
pe 258,070 102,574 ,131 2,516 ,012
p0 471,535 98,975 ,217 4,764 ,000
dela -,304 1,150 -,013 -,264 ,792

7 

rho 25,129 4,902 ,233 5,127 ,000
 a  Dependent Variable: ino 
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Table A6 Results of the regression analysis for average degree with empty networks excluded 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 ,262(a) ,068 ,066 18,11549 
2 ,262(b) ,069 ,063 18,13944 
3 ,441(c) ,195 ,188 16,89233 
4 ,443(d) ,196 ,187 16,90341 
5 ,443(e) ,196 ,184 16,92799 
6 ,447(f) ,200 ,186 16,91190 
7 ,548(g) ,300 ,285 15,84625 

a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, dela 
g  Predictors: (Constant), N, w, kmax, pe, p0, dela, rho 

 
Coefficients(a) 

Model   Unstandardized Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) 2,254 2,400  ,939 ,348
  N ,186 ,037 ,262 4,962 ,000
2 (Constant) 1,872 2,653  ,706 ,481
  N ,185 ,038 ,260 4,909 ,000
  w ,012 ,034 ,018 ,340 ,734
3 (Constant) 14,793 3,050  4,849 ,000
  N ,197 ,035 ,277 5,616 ,000
  w -,055 ,033 -,085 -1,661 ,098
  kmax -,251 ,035 -,370 -7,221 ,000
4 (Constant) 13,092 3,802  3,444 ,001
  N ,197 ,035 ,277 5,605 ,000
  w -,048 ,034 -,075 -1,401 ,162
  kmax -,241 ,037 -,355 -6,465 ,000
  pe 2,434 3,243 ,040 ,751 ,453
5 (Constant) 13,395 4,122  3,249 ,001
  N ,197 ,035 ,277 5,589 ,000
  w -,048 ,035 -,075 -1,396 ,164
  kmax -,240 ,037 -,355 -6,449 ,000
  pe 2,494 3,262 ,041 ,764 ,445
  p0 -,633 3,304 -,009 -,191 ,848
6 (Constant) 14,311 4,180  3,423 ,001
  N ,193 ,035 ,271 5,449 ,000
  w -,034 ,036 -,052 -,923 ,357
  kmax -,218 ,041 -,321 -5,284 ,000
  pe 3,906 3,442 ,064 1,135 ,257
  p0 -,958 3,311 -,014 -,289 ,773
  dela -,049 ,039 -,071 -1,277 ,203
7 (Constant) 2,005 4,309  ,465 ,642
  N ,186 ,033 ,262 5,622 ,000
  w -,027 ,034 -,041 -,780 ,436
  kmax -,196 ,039 -,290 -5,062 ,000
  pe 4,526 3,226 ,075 1,403 ,162
  p0 -2,720 3,113 -,041 -,874 ,383
  dela -,044 ,036 -,063 -1,207 ,228
  rho 1,056 ,154 ,319 6,847 ,000

 a  Dependent Variable: deg 
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Table A7 Results of the regression analysis for the clustering coefficient with empty networks excluded 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 ,048(a) ,002 -,001 ,15580 
2 ,099(b) ,010 ,004 ,15544 
3 ,439(c) ,193 ,186 ,14053 
4 ,458(d) ,210 ,200 ,13927 
5 ,458(e) ,210 ,198 ,13945 
6 ,470(f) ,221 ,207 ,13871 
7 ,616(g) ,379 ,366 ,12404 

a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, dela 
g  Predictors: (Constant), N, w, kmax, pe, p0, dela, rho 

 
Coefficients(a) 

Model   Unstandardized Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) ,132 ,021  6,384 ,000
  N ,000 ,000 ,048 ,885 ,377
2 (Constant) ,116 ,023  5,123 ,000
  N ,000 ,000 ,041 ,749 ,455
  w ,000 ,000 ,087 1,593 ,112
3 (Constant) ,246 ,025  9,690 ,000
  N ,000 ,000 ,062 1,250 ,212
  w ,000 ,000 -,038 -,731 ,465
  kmax -,003 ,000 -,446 -8,696 ,000
4 (Constant) ,296 ,031  9,435 ,000
  N ,000 ,000 ,063 1,289 ,198
  w ,000 ,000 -,075 -1,417 ,157
  kmax -,003 ,000 -,498 -9,143 ,000
  pe -,071 ,027 -,141 -2,657 ,008
5 (Constant) ,300 ,034  8,844 ,000
  N ,000 ,000 ,063 1,277 ,202
  w ,000 ,000 -,075 -1,409 ,160
  kmax -,003 ,000 -,497 -9,119 ,000
  pe -,070 ,027 -,139 -2,606 ,010
  p0 -,010 ,027 -,018 -,369 ,712
6 (Constant) ,313 ,034  9,126 ,000
  N ,000 ,000 ,053 1,077 ,282
  w ,000 ,000 -,037 -,670 ,503
  kmax -,002 ,000 -,442 -7,366 ,000
  pe -,051 ,028 -,100 -1,794 ,074
  p0 -,015 ,027 -,026 -,534 ,594
  dela -,001 ,000 -,118 -2,136 ,033
7 (Constant) ,184 ,034  5,461 ,000
  N ,000 ,000 ,042 ,948 ,344
  w ,000 ,000 -,024 -,476 ,635
  kmax -,002 ,000 -,402 -7,465 ,000
  pe -,044 ,025 -,088 -1,749 ,081
  p0 -,033 ,024 -,059 -1,351 ,177
  dela -,001 ,000 -,108 -2,181 ,030
  rho ,011 ,001 ,401 9,147 ,000

 a  Dependent Variable: cls 
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Table A8 Results of the regression analysis for the evolution of the networks 
 

Model Summary 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 
1 804,104(a) ,411 ,549

    a  Estimation terminated at iteration number 5 because 
    parameter estimates changed by less than ,001. 
 

Variables in the Equation 

  B S.E. Wald df Sig. Exp(B) 
N ,011 ,003 12,121 1 ,000 1,011
w -,041 ,004 133,447 1 ,000 ,960
kmax -,042 ,004 139,799 1 ,000 ,959
pe -2,910 ,333 76,536 1 ,000 ,054
p0 ,096 ,307 ,099 1 ,753 1,101
delta ,011 ,003 13,063 1 ,000 1,011
rho ,033 ,004 87,659 1 ,000 1,034

Step 
1(a) 

Constant 3,305 ,436 57,435 1 ,000 27,242
 a  Variable(s) entered on step 1: N, w, kmax, pe, p0, delta, rho. 
 

Table A9 Results of the regression analysis for the average change in relative entropy 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,013(a) ,000 -,002 ,00172 
2 ,132(b) ,018 ,014 ,00171 
3 ,136(c) ,019 ,013 ,00171 
4 ,277(d) ,077 ,070 ,00166 
5 ,285(e) ,081 ,073 ,00166 
6 ,285(f) ,081 ,071 ,00166 
7 ,285(g) ,081 ,069 ,00166 
a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, delta 
g  Predictors: (Constant), N, w, kmax, pe, p0, delta, rho 

 
Coefficients(a) 

Unstandardized Coefficients 
Standardized 
Coefficients 

Model   B Std. Error Beta t Sig. 
(Constant) ,000 ,000  2,213 ,0271 
N 8,09E-007 ,000 ,013 ,303 ,762
(Constant) ,001 ,000  3,510 ,000
N 1,17E-006 ,000 ,019 ,443 ,658

2 

w -7,92E-006 ,000 -,132 -3,085 ,002
(Constant) ,001 ,000  2,265 ,024
N 1,10E-006 ,000 ,018 ,416 ,678
w -7,28E-006 ,000 -,121 -2,690 ,007

3 

kmax 2,20E-006 ,000 ,034 ,753 ,452
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(Constant) ,001 ,000  5,132 ,000
N 9,97E-007 ,000 ,016 ,387 ,699
w -1,02E-005 ,000 -,171 -3,829 ,000
kmax -1,87E-006 ,000 -,029 -,640 ,522

4 

pe -,001 ,000 -,250 -5,805 ,000
(Constant) ,002 ,000  5,344 ,000
N 1,01E-006 ,000 ,016 ,392 ,695
w -1,06E-005 ,000 -,177 -3,957 ,000
kmax -1,84E-006 ,000 -,028 -,629 ,530
pe -,001 ,000 -,250 -5,808 ,000

5 

p0 ,000 ,000 -,068 -1,635 ,103
(Constant) ,002 ,000  5,204 ,000
N 9,99E-007 ,000 ,016 ,387 ,699
w -1,05E-005 ,000 -,176 -3,883 ,000
kmax -1,71E-006 ,000 -,026 -,569 ,570
pe -,001 ,000 -,249 -5,739 ,000
p0 ,000 ,000 -,068 -1,640 ,102

6 

delta -5,13E-007 ,000 -,009 -,200 ,842
(Constant) ,002 ,000  4,951 ,000
N 9,98E-007 ,000 ,016 ,387 ,699
w -1,05E-005 ,000 -,176 -3,861 ,000
kmax -1,71E-006 ,000 -,026 -,568 ,570
pe -,001 ,000 -,249 -5,707 ,000
p0 ,000 ,000 -,068 -1,638 ,102
delta -5,13E-007 ,000 -,009 -,200 ,842

7 

rho 2,95E-008 ,000 ,000 ,011 ,991
  a  Dependent Variable: relent_avgch 
 

Table A10 Results of the regression analysis for the evolution of relative innovation 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,016(a) ,000 -,002 2,98140 
2 ,050(b) ,003 -,001 2,98084 
3 ,066(c) ,004 -,001 2,98076 
4 ,116(d) ,014 ,006 2,96990 
5 ,117(e) ,014 ,004 2,97248 
6 ,130(f) ,017 ,006 2,97050 
7 ,143(g) ,020 ,008 2,96777 
a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, delta 
g  Predictors: (Constant), N, w, kmax, pe, p0, delta, rho 

 
Coefficients(a) 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) ,666 ,287  2,316 ,021
  N -,002 ,005 -,016 -,381 ,703
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2 (Constant) ,475 ,336  1,416 ,157
  N -,002 ,005 -,019 -,434 ,665
  w ,005 ,004 ,047 1,097 ,273
3 (Constant) ,749 ,430  1,739 ,083
  N -,002 ,005 -,017 -,400 ,689
  w ,003 ,005 ,033 ,724 ,470
  kmax -,005 ,005 -,046 -1,015 ,311
4 (Constant) ,129 ,512  ,252 ,801
  N -,002 ,005 -,017 -,397 ,692
  w ,005 ,005 ,053 1,142 ,254
  kmax -,002 ,005 -,021 -,460 ,646
  pe ,988 ,445 ,099 2,220 ,027
5 (Constant) ,195 ,568  ,343 ,732
  N -,002 ,005 -,017 -,397 ,692
  w ,005 ,005 ,052 1,116 ,265
  kmax -,002 ,005 -,021 -,458 ,647
  pe ,989 ,446 ,099 2,220 ,027
  p0 -,119 ,446 -,012 -,268 ,789
6 (Constant) -,010 ,588  -,016 ,987
  N -,002 ,005 -,016 -,364 ,716
  w ,004 ,005 ,043 ,913 ,362
  kmax -,004 ,005 -,035 -,736 ,462
  pe ,918 ,448 ,092 2,047 ,041
  p0 -,097 ,446 -,009 -,217 ,829
  delta ,006 ,005 ,058 1,309 ,191
7 (Constant) ,256 ,617  ,414 ,679
  N -,002 ,005 -,014 -,331 ,741
  w ,005 ,005 ,050 1,056 ,292
  kmax -,004 ,005 -,032 -,659 ,510
  pe ,983 ,450 ,098 2,183 ,029
  p0 -,081 ,446 -,008 -,181 ,857
  delta ,006 ,005 ,058 1,319 ,188
  rho -,007 ,005 -,061 -1,408 ,160

  a  Dependent Variable: relino 
 

Table A11 Results of the regression analysis for the evolution of relative degree 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate

1 ,031(a) ,001 -,001 1,13394 
2 ,034(b) ,001 -,003 1,13504 
3 ,039(c) ,002 -,005 1,13606 
4 ,040(d) ,002 -,007 1,13726 
5 ,040(e) ,002 -,009 1,13848 
6 ,061(f) ,004 -,009 1,13849 
7 ,068(g) ,005 -,010 1,13915 

a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, delta 
g  Predictors: (Constant), N, w, kmax, pe, p0, delta, rho 



 38 

 
Coefficients(a) 

Model   Unstandardized Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) ,227 ,114  1,984 ,048
  N ,001 ,002 ,031 ,679 ,497
2 (Constant) ,204 ,136  1,502 ,134
  N ,001 ,002 ,031 ,670 ,503
  w ,001 ,002 ,014 ,311 ,756
3 (Constant) ,246 ,173  1,422 ,156
  N ,001 ,002 ,032 ,686 ,493
  w ,000 ,002 ,009 ,180 ,857
  kmax -,001 ,002 -,019 -,394 ,693
4 (Constant) ,230 ,209  1,103 ,271
  N ,001 ,002 ,032 ,687 ,493
  w ,000 ,002 ,010 ,204 ,839
  kmax -,001 ,002 -,017 -,350 ,727
  pe ,025 ,183 ,007 ,139 ,890
5 (Constant) ,235 ,230  1,018 ,309
  N ,001 ,002 ,032 ,685 ,493
  w ,000 ,002 ,010 ,201 ,841
  kmax -,001 ,002 -,017 -,348 ,728
  pe ,025 ,183 ,007 ,139 ,890
  p0 -,008 ,185 -,002 -,045 ,964
6 (Constant) ,298 ,239  1,247 ,213
  N ,001 ,002 ,031 ,671 ,502
  w ,001 ,002 ,018 ,350 ,727
  kmax ,000 ,002 -,007 -,129 ,897
  pe ,046 ,184 ,012 ,249 ,804
  p0 -,012 ,185 -,003 -,066 ,948
  delta -,002 ,002 -,047 -,995 ,320
7 (Constant) ,246 ,251  ,981 ,327
  N ,001 ,002 ,030 ,651 ,515
  w ,001 ,002 ,014 ,282 ,778
  kmax ,000 ,002 -,009 -,167 ,867
  pe ,031 ,186 ,008 ,168 ,866
  p0 -,017 ,186 -,004 -,091 ,928
  delta -,002 ,002 -,047 -,994 ,321
  rho ,001 ,002 ,032 ,680 ,497

  a  Dependent Variable: reldeg 
 

Table A12 Results of the regression analysis for the evolution of relative clustering 
 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 ,016(a) ,000 -,002 ,39588 

2 ,039(b) ,002 -,003 ,39610 

3 ,085(c) ,007 ,000 ,39544 

4 ,091(d) ,008 -,001 ,39571 

5 ,091(e) ,008 -,004 ,39618 

6 ,154(f) ,024 ,010 ,39356 

7 ,172(g) ,030 ,013 ,39283 
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a  Predictors: (Constant), N 
b  Predictors: (Constant), N, w 
c  Predictors: (Constant), N, w, kmax 
d  Predictors: (Constant), N, w, kmax, pe 
e  Predictors: (Constant), N, w, kmax, pe, p0 
f  Predictors: (Constant), N, w, kmax, pe, p0, delta 
g  Predictors: (Constant), N, w, kmax, pe, p0, delta, rho 

 
Coefficients(a) 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) ,240 ,042  5,660 ,000
  N ,000 ,001 ,016 ,341 ,734
2 (Constant) ,260 ,051  5,137 ,000
  N ,000 ,001 ,016 ,340 ,734
  w ,000 ,001 -,036 -,737 ,462
3 (Constant) ,321 ,064  5,015 ,000
  N ,000 ,001 ,020 ,420 ,674
  w -,001 ,001 -,060 -1,183 ,237
  kmax -,001 ,001 -,079 -1,551 ,122
4 (Constant) ,293 ,077  3,801 ,000
  N ,000 ,001 ,021 ,432 ,666
  w -,001 ,001 -,053 -1,026 ,306
  kmax -,001 ,001 -,071 -1,353 ,177
  pe ,044 ,067 ,033 ,661 ,509
5 (Constant) ,291 ,085  3,438 ,001
  N ,000 ,001 ,021 ,431 ,667
  w -,001 ,001 -,053 -1,022 ,307
  kmax -,001 ,001 -,071 -1,352 ,177
  pe ,044 ,067 ,033 ,661 ,509
  p0 ,002 ,067 ,002 ,034 ,973
6 (Constant) ,351 ,087  4,020 ,000
  N ,000 ,001 ,019 ,392 ,695
  w ,000 ,001 -,033 -,625 ,532
  kmax -,001 ,001 -,042 -,796 ,427
  pe ,066 ,067 ,050 ,989 ,323
  p0 -,002 ,067 -,002 -,032 ,975
  delta -,002 ,001 -,128 -2,574 ,010
7 (Constant) ,308 ,091  3,382 ,001
  N ,000 ,001 ,017 ,348 ,728
  w -,001 ,001 -,041 -,785 ,433
  kmax -,001 ,001 -,047 -,879 ,380
  pe ,052 ,067 ,039 ,771 ,441
  p0 -,007 ,067 -,005 -,099 ,921
  delta -,002 ,001 -,128 -2,585 ,010
  rho ,001 ,001 ,078 1,604 ,110

  a  Dependent Variable: relcls 




