

teccogs

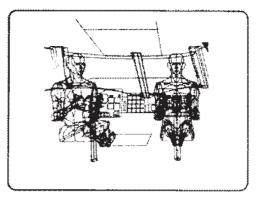
n. 7, 307 p, jan.-jun, 2012

"O poder absoluto vai corromper não apenas homens mas máquinas". Em seu artigo 'Inventando o futuro', Dennis Gabor expõe algumas de suas expectativas e medos sobre a função da máquina na sociedade do futuro. O comentário acima foi feito em referência às máquinas eletrônicas de prognóstico.

Até o momento, as máquinas eletrônicas de prognóstico não se tornaram uma realidade. Entretanto, outra afirmação feita pelo Professor Gabor no mesmo artigo (**Encounter**, Maio de 1960) parece de fato bastante relevante. A máquina – ele conjecturou – restinge o artista criativo? 'Eu espero sinceramente', Gabor continuou, 'que as máquina nunca venham a substituir os artistas criativos, mas em sã consciência eu não poderia dizer que isto não seria possível.'

O computador executa várias funções que, em sentido amplo, parecem ser atos de inteligência, por exemplo a manipulação de símbolos, o processamento de informação, a obediência a regras complexas e mesmo o aprendizado pela experiência. Mesmo assim, o computador não é capaz de produzir abstrações, e é desprovido das três forças primárias por trás da criatividade – imaginação, intuição e emoção. A despeito disto, o computador como parceiro do artista vêm fazendo aparições desde aproximadamente 1960. Em 1963, a revista **Computers and Automation** anunciou um concurso de arte computacional que aconteceu

DOSSIÊ jasia reichardt


teccogs

n. 7, 307 p, jan.-jun, 2012 anualmente desde então. O projeto vencedor geralmente aparece na capa da edição de Agosto e os concorrentes são apresentados no conteúdo interno. Os projetos variam consideravelmente ainda que eles compartilhem certas características, por exemplo são todos em branco-e-preto, há uma ênfase em formas geométricas, e eles são basicamente lineares. Como projetos, os produtos do computador parecem crus e mínimos, e representam pouco mais que o estágio inicial no que pode ser uma aventura bem mais desafiadora de fundir, ao invés de relacionar, atividade criativa e tecnologia.

O escopo da computação gráfica varia de composições estáticas a *frames* de imagens em movimento, e pode ser dividido em duas categorias: 1. as que se aproximam do *design* ou da arte pura; e 2. as sem fins estéticos, mas que servem para visualizar fenômenos físicos complexos.

Em uma conferência dedicada a relação entre computadores e design, em 1966, na Universidade de Waterloo, duas afirmações foram feitas que poderiam, em princípio, parecer desnecessariamente presunçosas e heróicas: 1. O computador simplesmente eleva o nível de possibilidades do trabalho criativo; 2. O computador já pode lidar como certos elementos da criatividade – considerando as definições atuais de criatividade. As duas afirmações foram feitas por cientistas, ainda que exista um ceticismo considerável entre cientistas e artistas sobre a validade de vários experimentos na área. Outros reinvindicam que o computador fornece a primeira possibilidade real de colaboração entre artista e cientista, que só pode ser baseada na familiaridade de ambos com as duas mídias.

O primeiro computador comercial foi anunciado em 1950. Dez anos depois a companhia de aviação Boeing cunhou o termo *computação gráfica*. Eles usaram gráficos

Um dos desenhos em CAD de William Fetter, projetista da Boeing que desde os anos 1950 desenvolveu projetos em computação gráfica DOSSIÊ jasia reichardt

teccogs

n. 7, 307 p, jan.-jun, 2012 para fins puramente utilitários. Eles foram empregados, por exemplo, para verificar a precisão de pouso de um avião visto do assento do piloto e da pista. Eles foram usados para estabelecer o raio de movimentos do piloto em seu ambiente na cabine. Com esta finalidade, eles criaram um piloto (*50 percentile*) e o estudaram por meio de animações. Todos os desenhos e animações foram feitos com computadores. Outros experimentos incluiram a visualização acústica de gráficos em perspectiva e a produção de vistas isométricas bastante precisas.

Há dois métodos principais, atualmente, através dos quais se faz computação gráfica. Em primeiro lugar, há desenhos a tinta produzidos por uma plotadora controlada por computador, em que uma caneta que se move, e transporta a imagem direto para o papel. Desenhos também podem ser feitos com imagens compostas de diferentes figuras e impressos em uma máquina de escrever que é automaticamente operada por computador. Na segunda categoria, estão os gráficos de computador feitos num tubo catódico com um feixe elétrico defletido através da tela fosforecente para produzir a imagem desejada. Uma câmera fotografa a imagem em vários estágios e um console eletrônico é usado para controlar a imagem e avançar o filme. Gráficos estáticos podem ser obtidos ao fazer fotografias ampliadas do filme. Sejam as imagens feitas para fins analíticos ou por diversão, a computação gráfica é um análogo visual par uma seqüência de cálculos que alimentam o computador.

O já 'antigo' *Sketchpad* que foi usado para numerosos experimentos deste tipo no Massachusetts Institute of Technology, desde 1962, foi um dos primeiros a produzir desenhos em um monitor de tubo de raio catódico, demonstrando o tipo de possibilidades que são inerente a este sistema. Era possível desenhar com uma caneta de luz nos padrões simples na tela, consistindo de linhas e curvas. O operador poderia impor certos limites constrictions aos padrões que ele produzia ao solicitar, por exemplo, puxando o botão apropriado, que as linhas tornem-se paralelas, verticais ou retas. Neste estágio, o operador não poderia solicitar algo tão complexo como uma solução para o seguinte problema: "Estas linhas representam um pedaço de estrutura de uma certa espessura e tamanho, e com certas característica cruzadas, feitas de um material particular e obecendo certas leis físicas – representem esta estrutura sob uma pressão de tantos quilos por metro quadrado".

DOSSIÊ jasia reichardt

teccogs n. 7, 307 p, jan.-jun, 2012

Beatles Eletronique (1966-69), de Nam June Paik: uma das primeiras experiências com síntese de imagens em movimento

Hoje em dia, os processos em que um projeto é ajuste em cada estágio de desenvolvimento já é bastante familiar. Se o operador altera o projeto no monitor de tudo de raio catódico com uma caneta de luz, o computador converte o projeto alterado em impulsos eletrônicos que usa para modificar o programa préexistente armazenado na memória de armazenamento do computador. O projeto alterado aparece, então, em outro monitor de tudo de raio catódico. Este sistema é amplamente usado pela *General Motors* para projetar carros. A imagem no tudo de raio catódico pode ser alterada, rotacionada, ampliada, vista em perspectiva, armazenada, recuperada e transferida para papel com os estágios intermediários gravados em filme. Já que o processo sugere dificuldade inibidoras para quem não é um engenheiro eletrônico, pode ser difícil para um artista imaginar de que

DOSSIÊ jasia reichardt

teccogs

n. 7, 307 p, jan.-jun, 2012 forma ele poderia usar um computador. A solução para o problema encontra-se na colaboração. Há três estágios no processo de produzir computação gráfica, ou usar o computador na maioria dos casos. Em primeiro lugar, o comunicador apresenta suas ideais ou mensagens que serão comunicadas ao computador. Em segundo lugar, o especialista em comunicação decide, a menos que existam instruções específicas, se o problema deveria ser resolvido graficamente, verbalmente ou numa combinação dos dois. Em terceiro lugar, o especialista em computadores seleciona o equipamento apropriado e interpreta o problema em linguagem de máquina, de forma que o computador possa processá-lo. O artista coreano Nam June Paik foi longe a ponto de defender que, da mesma forma que as técnicas de colagem substituiram a pintura a óleo, também o tubo de raio catódico vai substituir a tela. No entanto, até o momento apenas três artistas de que tenho conhecimento efetivamente produziram computação gráfica, o restante da produção tendo sido feita por cientistas.

No momento, o escopo de possibilidades visuais pode não parecer muito extenso, já que o computador é melhor usado para formas mais esquemáticas e geométricas, e estes padrões que são logicamente simples ainda que possam parecer bastante intrincados. É possível programar o computador para produzir padrões baseados na secção áurea ou qualquer outra premissa específica, definindo um conjunto de parâmetros e permitindo a permuta aleatória das várias possibilidades nele contidas. Desta forma, certas limitações são fornecidas, com as quais o computador pode 'improvisar' e, no espaço de vinte minutos, percorrer todo o potencial visual inerente a um certo esquema. É possível, ainda que talvez improvável, que um gráfico programado para desenhar variações com linhas retas possa consistir apenas de uma linha posicionada exatamente sobre a outra. Se não há fórmula para prever cada número ou passo de uma dada seqüência, o sistema pelo qual este tipo de computação gráfica surge pode ser considerado randômico.

Resultados interessantes podem ser obtidos ao introduzir diferentes elementos aleatórios no programa. É possível, por exemplo, produzir uma série de pontos numa superfície que pode ser conectada em várias formas por linhas retas, ou instruir o computador a desenhar formas geométricas sólidas sem especificar em que seqüências elas serão sobrepostas, permitindo sobreposições de formas ao acaso.

DOSSIÊ jasia reichardt

teccogs

n. 7, 307 p, jan.-jun, 2012 Num experimento fascinante, Michael Noll, do *Bell Telephone Laboratories*, analisou um quadro branco-e-preto de 1917, pintado com sinais de mais e menos, por Mondrian, e produziu uma série de imagens criadas por computador de forma aleatória, usando o mesmo número de barras horizontais e verticais posicionadas em áreas idênticas. Ele registrou que de 59% das pessoas que viram o quadro de Mondrian e uma das versões computacionais, 28% identificaram corretamente a imagem feita pelo computador, e 72% pensaram que o quadro de Mondrian havia sido feito por computador. O experimento não pretende gerar provas ou teorias, ele serve apenas como estimulo ao pensamento. Noll, que produziu uma quantidade considerável de filmes e animações em computação gráfica nos Estados Unidos, os via como um estágio bastante inicial das relações possíveis entre artista e computador. Ele não se considerava um artista por causa de sua produção computacional. Ele via-se como alguém que estava fazendo explorações preliminares com objetivo de familiarizar os artistas com estas novas possibilidades.

Talvez, ainda menos crível que a ideia de imagens geradas por computador, seja a ideia de escultura computacional. Isto também já foi feito. Um programa para escultura tridimensional pode alimentar um computador – a projeção tridimensional de um projeto bidimensional. Ela pode ser transferida via cartão perfurado para uma máquina de moldagem que é capaz de produzir objetos físicos criados em três dimensões.

O computador é apenas uma ferramenta que, no momento, ainda parece bastante removida das preocupações polêmicas que interessam a arte. No entanto, mesmo agora, visto com todos os preconceitos de tradição e época, não é possível negar que o computador apresenta uma extensão radical de técnicas e mídia artísticas. As possibilidades inerentes ao computador como uma ferramenta criativa fará pouco para mudar os idiomas da arte que confiam primariamente no diálogo entre o artista, suas ideais e a tela. Eles vão, entretanto, aumentar o escopo da arte e contribuir para sua diversidade.

Este artigo introduzia a seção Computer Graphics na edição especial da Studio International sobre a exposição Cybernetic Serendipity, the computer and the arts. Londres. Agosto de 1968, pp. 70-71. O texto foi cedido pela autora para tradução para Português, com apoio do Sonic Acts Festival, que editou o artigo em The Anthology of **Computer Arts**

Traduzido por Marcus Bastos DOSSIÊ jasia reichardt

teccogs

n. 7, 307 p, jan.-jun, 2012

When New Media Was New: palestra de Jasia Reichardt (30 de setembro de 2003, na Tate /Londres)